动态面板数据模型,是指通过在静态面板数据模型中引入滞后被解释变量以反映动态滞后效应的模型。这种模型的特殊性在于被解释变量的动态滞后项与随机误差组成部分中的个体效应相关,从而造成估计的内生性。
相对于只具有一个时点的横截面数据模型,面板数据包含了更多时间维度的数据,从而可以利用更多的信息来分析所研究问题的动态关系;而时间序列模型,其数据往往是由个体数据加总产生的,在实际计量分析中,在研究其动态调整行为时,由于个体差异被忽略,其估计结果有可能是有偏的,而面板数据模型能够通过截距项,捕捉到数据的动态调整过程中的个体差异,有效地减少了由于数据加总所产生的偏误;同时,面板数据同时具有时间和截面空间的两个维度,从而分享了横截面数据和时间序列数据的优点,另外,由于具有更多的观察值,其推断的可靠性也有所增加。