过圆x²+y²=r²外一点P(x0,y0)作切线PA,PB,A(x1,y1),B(x2,y2)是切点,则过AB的直线xx0+yy0=r²,称切点弦方程。
证明:x²+y²=r²在点A,B的切线方程是xx1+yy1=r²,xx2+yy2=r²
∵点P在两切线上
∴x0x1+y0y1=r²,x0x2+y0y2=r²
此二式表明点A,B的坐标适合直线方程xx0+yy0=r²,而过点A,B的直线是唯一的
∴切点弦方程是xx0+yy0=r²
说明:
切点弦方程与圆x²+y²=r²上一点T(x0,y0)的切线方程相同。
过圆(x-a)²+(y-b)²=r²外一点P(x0,y0)作切线PA,PB,切点弦方程是(x-a)(x-x0)+(y-b)(y-y0)=r²。