三角函数怎么看周期
三角函数怎么看周期
三角函数的周期T=2π/ω。完成一次振动所需要的时间,称为振动的周期。若f(x)为周期函数,则把使得f(x+l)=f(x)对定义域中的任何x都成立的最小正数l,称为f(x)的(基复本)周期。三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
导读三角函数的周期T=2π/ω。完成一次振动所需要的时间,称为振动的周期。若f(x)为周期函数,则把使得f(x+l)=f(x)对定义域中的任何x都成立的最小正数l,称为f(x)的(基复本)周期。三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
三角函数的周期T=2π/ω。完成一次振动所需要的时间,称为振动的周期。若f(x)为周期函数,则把使得f(x+l)=f(x)对定义域中的任何x都成立的最小正数l,称为f(x)的(基复本)周期。
三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
三角函数怎么看周期
三角函数的周期T=2π/ω。完成一次振动所需要的时间,称为振动的周期。若f(x)为周期函数,则把使得f(x+l)=f(x)对定义域中的任何x都成立的最小正数l,称为f(x)的(基复本)周期。三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
为你推荐