点与圆相切方法
点与圆相切方法
点与圆相切:既点到直线的距离就是圆的半径。相切:若直线与曲线交于两点,且这两点无限相近,趋于重合时,该直线就是该曲线在该点的切线。初中数学中,若一条直线垂直于圆的半径且过圆的半径的外端,称这条直线与圆相切。相切是平面上的圆与另一个几何形状的一种位置关系。这里,“另一个几何形状”是圆或直线时,两者之间只有一个交点(公共点),当“另一个几何形状”是三角形时,圆与三角形的每条边之间仅有一个交点。这个交点即为切点。
导读点与圆相切:既点到直线的距离就是圆的半径。相切:若直线与曲线交于两点,且这两点无限相近,趋于重合时,该直线就是该曲线在该点的切线。初中数学中,若一条直线垂直于圆的半径且过圆的半径的外端,称这条直线与圆相切。相切是平面上的圆与另一个几何形状的一种位置关系。这里,“另一个几何形状”是圆或直线时,两者之间只有一个交点(公共点),当“另一个几何形状”是三角形时,圆与三角形的每条边之间仅有一个交点。这个交点即为切点。
点与圆相切:既点到直线的距离就是圆的半径。
相切:若直线与曲线交于两点,且这两点无限相近,趋于重合时,该直线就是该曲线在该点的切线。初中数学中,若一条直线垂直于圆的半径且过圆的半径的外端,称这条直线与圆相切。相切是平面上的圆与另一个几何形状的一种位置关系。这里,“另一个几何形状”是圆或直线时,两者之间只有一个交点(公共点),当“另一个几何形状”是三角形时,圆与三角形的每条边之间仅有一个交点。这个交点即为切点。
点与圆相切方法
点与圆相切:既点到直线的距离就是圆的半径。相切:若直线与曲线交于两点,且这两点无限相近,趋于重合时,该直线就是该曲线在该点的切线。初中数学中,若一条直线垂直于圆的半径且过圆的半径的外端,称这条直线与圆相切。相切是平面上的圆与另一个几何形状的一种位置关系。这里,“另一个几何形状”是圆或直线时,两者之间只有一个交点(公共点),当“另一个几何形状”是三角形时,圆与三角形的每条边之间仅有一个交点。这个交点即为切点。
为你推荐