若Y=a+bX,则有:令E(X)=μ,D(X)=σdu。则E(Y)=bμ+a,D(Y)=bσ。E(XY)=E(aX+bX)=aμ+b(σ+μ)。Cov(X,Y)=E(XY)E(X)E(Y)=bσ。
相关系数介于区间[-1,1]内。当相关系数为-1,表示完全负相关,表明两项资产的收益率变化方向和变化幅度完全相反。当相关系数为+1时,表示完全正相关,表明两项资产的收益率变化方向和变化幅度完全相同。当相关系数为0时,表示不相关。
需要指出的是,相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象。因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1;当n较大时,相关系数的绝对值容易偏小。特别是当n=2时,相关系数的绝对值总为1。因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的。