排序算法是《数据结构与算法》中最基本的算法之一。排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。以下是冒泡排序算法:
冒泡排序(Bubble Sort)也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端。
作为最简单的排序算法之一,冒泡排序给我的感觉就像 Abandon 在单词书里出现的感觉一样,每次都在第一页第一位,所以最熟悉。冒泡排序还有一种优化算法,就是立一个 flag,当在一趟序列遍历中元素没有发生交换,则证明该序列已经有序。但这种改进对于提升性能来
说并没有什么太大作用。1. 算法步骤比较相邻的元素。如果第一个比第二个大,就交换他们两个。
对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
针对所有的元素重复以上的步骤,除了最后一个。
持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
2. 动图演示3. 什么时候最快当输入的数据已经是正序时(都已经是正序了,我还要你冒泡排序有何用啊)。
4. 什么时候最慢当输入的数据是反序时(写一个 for 循环反序输出数据不就行了,干嘛要用你冒泡排序呢,我是闲的吗)。
5. JavaScript 代码实现实例 function bubbleSort(arr) { var len = arr.length; for (var i = 0; i < len - 1; i++) { for (var j = 0; j < len - 1 - i; j++) { if (arr[j] > arr[j+1]) { // 相邻元素两两对比 var temp = arr[j+1]; // 元素交换 arr[j+1] = arr[j]; arr[j] = temp; } } } return arr;}6. Python 代码实现实例 def bubbleSort(arr): for i in range(1, len(arr)): for j in range(0, len(arr)-i): if arr[j] > arr[j+1]: arr[j], arr[j + 1] = arr[j + 1], arr[j] return arr7. Go 代码实现实例 func bubbleSort(arr []int) []int { length := len(arr) for i := 0; i < length; i++ { for j := 0; j < length-1-i; j++ { if arr[j] > arr[j+1] { arr[j], arr[j+1] = arr[j+1], arr[j] } } } return arr}8. Java 代码实现实例 public class BubbleSort implements IArraySort { @Override public int[] sort(int[] sourceArray) throws Exception { // 对 arr 进行拷贝,不改变参数内容 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); for (int i = 1; i < arr.length; i++) { // 设定一个标记,若为true,则表示此次循环没有进行交换,也就是待排序列已经有序,排序已经完成。 boolean flag = true; for (int j = 0; j < arr.length - i; j++) { if (arr[j] > arr[j + 1]) { int tmp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = tmp; flag = false; } } if (flag) { break; } } return arr; }}9. PHP 代码实现实例 function bubbleSort($arr){ $len = count($arr); for ($i = 0; $i < $len - 1; $i++) { for ($j = 0; $j < $len - 1 - $i; $j++) { if ($arr[$j] > $arr[$j+1]) { $tmp = $arr[$j]; $arr[$j] = $arr[$j+1]; $arr[$j+1] = $tmp; } } } return $arr;}10. C 语言实例 #include原文地址:https://github.com/hustcc/JS-Sorting-Algorithm/blob/master/1.bubbleSort.md
参考地址:https://zh.wikipedia.org/wiki/%E5%86%92%E6%B3%A1%E6%8E%92%E5%BA%8F
以下是热心网友对冒泡排序算法的补充,仅供参考:
热心网友提供的补充1:
改进版冒泡排序
冒泡排序第1次遍历后会将最大值放到最右边,这个最大值也是全局最大值。标准冒泡排序的每一次遍历都会比较全部的元素,虽然最右侧的值已经是最大值了。改进之后,每次遍历后的最大值,次大值,等等会固定在右侧,避免了重复比较。Python 实现:
def bubbleSort(arr): for i in range(len(arr) - 1, 0, -1): # 反向遍历 for j in range(0, i): # 由于最右侧的值已经有序,不再比较,每次都减少遍历次数 if arr[j] > arr[j + 1]: arr[j], arr[j + 1] = arr[j + 1], arr[j] return arr
Go 实现:
func bubbleSort(arr []int) []int { for i := len(arr) - 1; i > 0;i-- { // 反向遍历 for j := 0; j < i; j++ { if arr[j] > arr[j + 1]{ arr[j], arr[j + 1] = arr[j + 1], arr[j] } } } return arr }
热心网友提供的补充2:
啦~~~只是多了一个哪里已经有序的下表而已呀~~~性能提升了不少呢~~~
def bubble_sort(list): k = len(list) - 1 pos = 0 for i in range(len(list) - 1): flag = False for j in range(k): if list[j] > list[j + 1]: tmp = list[j] list[j] = list[j + 1] list[j + 1] = tmp flag = True pos = j k = pos if flag == False: break return list import threading from random import * from time import * class Thread(threading.Thread): def __init__(self,f): threading.Thread.__init__(self) self.input = None self.returnval = None self.f = f def run(self): if self.input != None: self.returnval = self.f(self.input) else: self.returnval = self.f()
再来开个多线程~~~顺便加个条件才开多线程~~~性能提升的不是一点点呢~~~
以上为冒泡排序算法详细介绍,插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等排序算法各有优缺点,用一张图概括:关于时间复杂度
平方阶 (O(n2)) 排序 各类简单排序:直接插入、直接选择和冒泡排序。
线性对数阶 (O(nlog2n)) 排序 快速排序、堆排序和归并排序;
O(n1+§)) 排序,§ 是介于 0 和 1 之间的常数。 希尔排序
线性阶 (O(n)) 排序 基数排序,此外还有桶、箱排序。
关于稳定性
稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。
不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。
名词解释:
n:数据规模
k:"桶"的个数
In-place:占用常数内存,不占用额外内存
Out-place:占用额外内存
稳定性:排序后 2 个相等键值的顺序和排序之前它们的顺序相同