特征值和特征向量是线性代数中的重要概念。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值,非零n维列向量x称为矩阵A的属于或对应于特征值m的特征向量,简称A的特征向量。特征值是矩阵固有的.由特征多项式唯一确定。而特征向量不唯一,特征向量来自齐次线性方程组的解,是齐次线性方程组的基础解系的非零线性组合,所以不唯一。
导读特征值和特征向量是线性代数中的重要概念。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值,非零n维列向量x称为矩阵A的属于或对应于特征值m的特征向量,简称A的特征向量。特征值是矩阵固有的.由特征多项式唯一确定。而特征向量不唯一,特征向量来自齐次线性方程组的解,是齐次线性方程组的基础解系的非零线性组合,所以不唯一。
特征值和特征向量是线性代数中的重要概念。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值,非零n维列向量x称为矩阵A的属于或对应于特征值m的特征向量,简称A的特征向量。
特征值和特征向量是线性代数中的重要概念。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值,非零n维列向量x称为矩阵A的属于或对应于特征值m的特征向量,简称A的特征向量。特征值是矩阵固有的.由特征多项式唯一确定。而特征向量不唯一,特征向量来自齐次线性方程组的解,是齐次线性方程组的基础解系的非零线性组合,所以不唯一。