什么是有限元法位移法
什么是有限元法位移法
有限元法是一种高效能、常用的数值计算方法。科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中。基本思想:由解给定的泊松方程化为求解泛函的极值问题。位移法是解决超静定结构最基本的计算方法,计算时与结构超静定次数关系不大,相较于力法及力矩分配法,其计算过程更加简单,计算结果更加精确,应用的范围也更加广泛,可以应用于有侧移刚架结构的计算。此外,对于结构较为特殊的体系,应用位移法可以很方便地得出弯矩图的形状,位移法不仅适用于超静定结构内力计算,也适用于静定结构内力计算。
导读有限元法是一种高效能、常用的数值计算方法。科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中。基本思想:由解给定的泊松方程化为求解泛函的极值问题。位移法是解决超静定结构最基本的计算方法,计算时与结构超静定次数关系不大,相较于力法及力矩分配法,其计算过程更加简单,计算结果更加精确,应用的范围也更加广泛,可以应用于有侧移刚架结构的计算。此外,对于结构较为特殊的体系,应用位移法可以很方便地得出弯矩图的形状,位移法不仅适用于超静定结构内力计算,也适用于静定结构内力计算。
有限元法是一种高效能、常用的数值计算方法。
科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中。基本思想:由解给定的泊松方程化为求解泛函的极值问题。
位移法是解决超静定结构最基本的计算方法,计算时与结构超静定次数关系不大,相较于力法及力矩分配法,其计算过程更加简单,计算结果更加精确,应用的范围也更加广泛,可以应用于有侧移刚架结构的计算。此外,对于结构较为特殊的体系,应用位移法可以很方便地得出弯矩图的形状,位移法不仅适用于超静定结构内力计算,也适用于静定结构内力计算。
什么是有限元法位移法
有限元法是一种高效能、常用的数值计算方法。科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中。基本思想:由解给定的泊松方程化为求解泛函的极值问题。位移法是解决超静定结构最基本的计算方法,计算时与结构超静定次数关系不大,相较于力法及力矩分配法,其计算过程更加简单,计算结果更加精确,应用的范围也更加广泛,可以应用于有侧移刚架结构的计算。此外,对于结构较为特殊的体系,应用位移法可以很方便地得出弯矩图的形状,位移法不仅适用于超静定结构内力计算,也适用于静定结构内力计算。
为你推荐