平行x轴的斜率是多少
平行x轴的斜率是多少
平行x轴的斜率α=0°,k=tan0°=0,一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα,当直线l与x轴垂直时,α=90°,k不存在。由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在。曲线的变化趋势仍可以用过曲线上一点的切线的斜率即导数来描述。导数的几何意义是该函数曲线在这一点上的切线斜率。
导读平行x轴的斜率α=0°,k=tan0°=0,一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα,当直线l与x轴垂直时,α=90°,k不存在。由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在。曲线的变化趋势仍可以用过曲线上一点的切线的斜率即导数来描述。导数的几何意义是该函数曲线在这一点上的切线斜率。
平行x轴的斜率α=0°,k=tan0°=0,一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα,当直线l与x轴垂直时,α=90°,k不存在。由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在。曲线的变化趋势仍可以用过曲线上一点的切线的斜率即导数来描述。导数的几何意义是该函数曲线在这一点上的切线斜率。
平行x轴的斜率是多少
平行x轴的斜率α=0°,k=tan0°=0,一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα,当直线l与x轴垂直时,α=90°,k不存在。由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在。曲线的变化趋势仍可以用过曲线上一点的切线的斜率即导数来描述。导数的几何意义是该函数曲线在这一点上的切线斜率。
为你推荐