高中椭圆常见解题技巧
高中椭圆常见解题技巧
利用椭圆的定义解题。椭圆的定义是用椭圆上的点到焦点的距离来描述,因此在解题中凡涉及曲线上的点到焦点的距离时,应先想到用定义求解,常会有事半功倍之效。利用待定系数法确定椭圆的标准方程。运用待定系数法求椭圆标准方程,即设法建立关于a、b的方程组,先定型、再定量,若位置不确定时,考虑是否两解。利用向量解决椭圆问题。几何中突出向量的工具作用成为高考命题的新亮点,向量本身具有数与形的双重身份,因此常把向量的代数式转化为坐标表示或利用其几何关系求解。
导读利用椭圆的定义解题。椭圆的定义是用椭圆上的点到焦点的距离来描述,因此在解题中凡涉及曲线上的点到焦点的距离时,应先想到用定义求解,常会有事半功倍之效。利用待定系数法确定椭圆的标准方程。运用待定系数法求椭圆标准方程,即设法建立关于a、b的方程组,先定型、再定量,若位置不确定时,考虑是否两解。利用向量解决椭圆问题。几何中突出向量的工具作用成为高考命题的新亮点,向量本身具有数与形的双重身份,因此常把向量的代数式转化为坐标表示或利用其几何关系求解。
利用椭圆的定义解题。椭圆的定义是用椭圆上的点到焦点的距离来描述,因此在解题中凡涉及曲线上的点到焦点的距离时,应先想到用定义求解,常会有事半功倍之效;利用待定系数法确定椭圆的标准方程。运用待定系数法求椭圆标准方程,即设法建立关于a、b的方程组,先定型、再定量,若位置不确定时,考虑是否两解;利用向量解决椭圆问题。几何中突出向量的工具作用成为高考命题的新亮点,向量本身具有数与形的双重身份,因此常把向量的代数式转化为坐标表示或利用其几何关系求解。
高中椭圆常见解题技巧
利用椭圆的定义解题。椭圆的定义是用椭圆上的点到焦点的距离来描述,因此在解题中凡涉及曲线上的点到焦点的距离时,应先想到用定义求解,常会有事半功倍之效。利用待定系数法确定椭圆的标准方程。运用待定系数法求椭圆标准方程,即设法建立关于a、b的方程组,先定型、再定量,若位置不确定时,考虑是否两解。利用向量解决椭圆问题。几何中突出向量的工具作用成为高考命题的新亮点,向量本身具有数与形的双重身份,因此常把向量的代数式转化为坐标表示或利用其几何关系求解。
为你推荐