电路中按正弦规律变化的电压或电流,统称为正弦量。
正弦量的三要素是振幅、角频率、初相位。
只是正弦量的两种不同的表示方法。u=U·cos(ωt+ψ)是正弦量的瞬时值表达式,是最基本的定义式。给出了三要素(最大值、角频率、初相位),U就是时间的函数。电工学中,也经常用旋转矢量来表示它。当角频率不变的情况下,旋转矢量以相同的角速度旋转。这样一来,只要初始位置(即初相位)确定以后,电路中各个正弦量之间的相互关系,就不会随时间发生变化。极坐标正好可以用来表示正弦量的大小和初相位——用极坐标的模表示正弦量的大小,幅角表示正弦量的初相位。这就是相量。ú=U·∠ψ的U是正弦量的大小(可以是峰值,常用的是有效值),ψ是正弦量的初相位。相量表示中,没有角频率的值。由此在运用相量分析和计算电工问题时,应确认有关正弦量的频率是相同的。
由于相量不涉及时间,因此其计算较之直接采用正余弦简化了不少,因此在电路计算中应用十分广泛。正弦量与相量的转换其实十分的简单,将正弦量的振幅除以√2作为相量的模,将其初相作为相量的相角即可。